Elektronische Wahlen nach dem Schachmatt

Martin Hirt

ETH Zurich

E-Voting Workshop, 5. Juni 2009

Outline

Talk Outline

- Motivation
- Yes/No Voting Protocol
- ullet K-out-of-L Voting Protocol
- Receipt-free Yes/No Voting Protocol
- $\bullet \ \, \mathsf{Receipt\text{-}free} \, \, K\text{-}\mathsf{out\text{-}of\text{-}}L \, \, \mathsf{Voting} \, \, \mathsf{Protocol} \, \,$
- Conclusions

Electronic Voting: Motivation

Summary

- voter must trust his own computer (can control it)
- voter must trust some of the servers

Yes/No Voting Protocol

Security Requirements

Correctness

- validity of ballots (in {yes,no}, entitled voter, ≤ 1 ballots)
- tallying (correct and *verifiable* sum)
- verifiability (anyone(?) can verify tally)

Privacy

- secrecy (cannot determine voter's vote)
- anonymity (who casts a vote?)
- independence (no partial results)

Availability

- accessibility (physical & logical)
- robustness (cannot abort)

Voting Schemes based on Homomorphic Encryption

Protocol Sketch

- 1. authorities generate SK/PK, SK is shared
- 2. voters send encrypted vote, validity proof, signature onto BB
- 3. anybody can compute encrypted tally (due to homomorphism)
- 4. authorities jointly decrypt and prove tally

Voting Schemes based on Homomorphic Encryption

Basic Ideas

- ballot = encrypted vote
- abstraction: Bulletin Board
- encryption is homomorphic → anyone can add encryptions
- protocol for threshold decryption

Model

Entities

- N authorities
- M voters

Communication

• bulletin board (public channels)

PKI

- each authority A_i has a secret key; public keys are known
- each voter has a signing key; verification keys are known

Generality

• L valid votes $\mathcal{V} = \{v_1, \dots, v_L\}$, e.g., $\mathcal{V} = \{0, 1\}$

Security

- correctness \Leftarrow at least t honest authorities tally
- privacy \Leftarrow less than t authorities are curious

Homomorphic Encryption Function

Encryption function: $(v, \alpha) \mapsto E(v, \alpha)$

Requirements

- semantically secure (w.r.t. v)
- homomorphic: $E(v_1, \alpha_1) \otimes E(v_2, \alpha_2) = E(v_1 + v_2, \alpha_1 + \alpha_2)$
- distributed set-up (threshold security)
- verifiable decryption (threshold security)
- q-invertible: $D_q(e) = (v, \alpha)$ s.t. $E(v, \alpha) = qe$.

Instances

- [CGS97]: variant of [ElGamal84], with [Pedersen91] setup
- [DJ00], [FPS00]: threshold setup for [Paillier99]

Σ -Proofs

q-One-Way-Group-Homomorphism (*q*-OWGH)

- $f:(G,\oplus)\to(H,\otimes)$
- homomorphic: $f(x \oplus x') = f(x) \otimes f(x')$
- q-invertible: $\hat{f}_q(y) = x_q$ s.t. $f(x_q) = y^q$

Σ -Proofs

- interactive proof of knowledge
- honest-verifier zero-knowledge
- non-interactive proof via Fiat-Shamir heuristics

Σ -Proofs for q-OWGH

- given y, prove knowledge of x with f(x) = y
- given y_1, \ldots, y_ℓ , prove knowledge of x, i with $f(x) = y_i$

Encryption Function [ElGamal84, CGS97]

Setup [Ped91, CGS97]

- cyclic group $G = \langle g \rangle$
- shared SK z, PK $Z = g^z$

Encryption

• $E(v,\alpha) = (g^{\alpha}, g^{v}Z^{\alpha})$

Homomorphism

• $(x_1, y_1) \otimes (x_2, y_2) \stackrel{\text{def}}{=} (x_1 x_2, y_1 y_2)$ $\Rightarrow E(v_1, \alpha_1) \otimes E(v_2, \alpha_2) = E(v_1 + v_2, \alpha_1 + \alpha_2)$

Decryption

- $E(T) = (x, y) \rightarrow \frac{y}{x^z} = \frac{g^T Z^\alpha}{(g^\alpha)^z} = \frac{g^T (g^z)^\alpha}{(g^\alpha)^z} = g^T$
- $g^T \to T$, with cost O(T)

Voting Schemes based on Homomorphic Encryption

Protocol Sketch

- 1. authorities generate SK/PK, SK is shared
- 2. voters send encrypted vote, validity proof, signature onto BB
- 3. anybody can compute encrypted tally (due to homomorphism)
- 4. authorities jointly decrypt and prove tally

Validity Proof I

Given: encryption $e = E(v, \alpha)$, valid votes $\mathcal{V} = \{v_1, \dots, v_L\}$

Prove: know α s.t.

Alternative: know α s.t.

$$e = E(v_1, \alpha)$$

$$E(0,\alpha) = e \oslash E(v_1,0)$$

or
$$e = E(v_2, \alpha)$$

or
$$E(0,\alpha) = e \oslash E(v_2,0)$$

or
$$e = E(v_L, \alpha)$$

or
$$e = E(v_L, \alpha)$$
 or $E(0, \alpha) = e \oslash E(v_L, 0)$

Technically: knows pre-image α of either

$$y_1=e\oslash E(v_1,0),\quad y_2=e\oslash E(v_2,0),\quad \ldots,\quad y_L=e\oslash E(v_L,0),$$
 w.r.t. to $g\text{-OWGH}$: $f:\alpha\mapsto E(0,\alpha).$

⇒ non-interactive validity proof.

Validity Proof II

Group homomorphism $f: \mathbb{Z}_q \to G^2, \alpha \mapsto E(0, \alpha)$

Prover

Verifier

$$r_i \in_R \mathbb{Z}_q, t_i = E(0, r_i)$$

For
$$j = 1, \ldots, L, j \neq i$$
:

$$c_j, s_j \in_R \mathbb{Z}_q$$

$$t_j = E(0, s_j) \oslash$$

$$(e \oslash E(v_j, 0))^{c_j} \xrightarrow{t_1, \dots, t_L}$$

$$c_i = c - \sum_{j=1, j \neq i}^{L} \frac{c_j}{c_j}$$

$$s_i = r_i + c_i \alpha$$

$$s_1, .., s_L, c_1, .., c_L \ c \stackrel{?}{=} \sum_{j=1}^L c_j$$

For
$$j = 1, ..., L$$
:
 $E(0, s_j) \stackrel{?}{=} t_j \otimes$

 $(e \oslash E(v_i, 0))^{c_j}$

K-out-of-L Voting Protocol

K-out-of-L Voting

K-out-of-L Vote

- L candidates/options, vote for K of them (K < L)
- ballot: | 0 | 1 | 1 | 0 | 0 | (*L*-vector, *K* ones)
- result: #votes per candidate

L parallel 0/1-Votes \dots

- L-vector of mini-ballots: $|v_1|v_2|v_3|v_4|v_5$
- $|e_1|e_2|e_3|e_4|e_5$ • encrypt:
- validity proof for each i (i.e., e_i " \in " $\{0, 1\}$)

...Plus

- implicit vote $v_{\Sigma} = \sum v_i$ (should be K)
- implicit encrypted sum: $e_{\Sigma} = \bigotimes e_i$
- validity proof for $\mathcal{V} = \{K\}$

Efficiency

Proposed Scheme

• ballot size: 2L field elements

• validity proof size: 4L + 2 field elements

• voter's signature: 2 field elements

• total on bulletin board: 6L + 4 field elements

Cramer/Gennaro/Schoenmakers

• ballot size: 1 field element

• validity proof: $4L^{K-1}$ field elements

• voter's signature: 2 field elements

• total on bulletin board: $4L^{K-1} + 3$ field elements

• with ElGamal: exponential computation in L

 \bullet with ElGamal and Paillier: exponential communication in K

Receipt-Freeness

New Requirement

• secrecy: voter can keep vote secret

• receipt-freeness: voter must keep vote secret

Remarks

- captures both vote-buying and coercion
- impossible for write-ins
- impossible in the standard model

New Assumptions

- voting booth
- untappable channels (many flavors)
- erasures (voter partially honest)
- Others?

Vote-Buying

Receipt-Free Voting Scheme with Randomizers

Basic Ideas

- randomizer changes randomness in ballot
- voter does not know new randomness!
- randomizer should not learn vote
- randomizer is authority or hardware device

Receipt-Free Voting Scheme with Randomizers

Protocol Sketch

- 1. voter sends encrypted ballot $e = E(v, \alpha)$ to randomizer
- 2. randomizer sends $e^* = e \otimes E(0, \xi)$ to voter
- 3. randomizer gives randomization certificate (for e^*) to voter
- 4. proofs: randomization proof and validity proof

Randomization Proof

Given: randomizer knows ξ s.t. $e^* = e \otimes E(0, \xi)$

Idea:

$$f: \mathbb{Z}_q o G imes G, r \mapsto E(0,r),$$

prove knowledge of pre-image ζ s.t. $f(\zeta) = e^* \oslash e$

Problem: voter can give proof to vote-buyer

Designated-Verifier Proof

- ullet randomizer proves knowledge of either ξ or voter's SK z_v
- $\bullet \ \, \text{OR-proof} \ \, \underbrace{\begin{array}{c} \Sigma\text{-proof of knowledge of pre-image of} \ e^* \oslash e \\ \Sigma\text{-proof of knowledge of SK corresponding PK} \ Z_v \end{array}}$
- non-interactive with Fiat-Shamir heuristics
- resulting proof is non-transferable

Receipt-Free Voting Scheme with Randomizers: Techniques

Randomization

- voter sends encrypted ballot $e = E(v, \alpha)$ to randomizer
- randomizer computes $e^* = e \otimes E(0, \xi)$.
- randomizer sends e^* and signature on e^* to voter

Randomization Proof

- randomizer proves to voter that $e^* \cong e$
- voter must not give away this proof!
- → designated-verifier proof

Validity Proof

- randomizer and Voter together generate validity proof for e^*
- ⇒ diverted proof

Randomization Proof II (With Schnorr Identification)

Randomizer

Voter

knows
$$Z_v, \alpha$$
 s.t.
 $E(0, \alpha) = e^* \oslash e$

knows
$$e, e^*, z_v, Z_v = g^{z_v}$$

$$r_1 \in_R \mathbb{Z}_q, t_1 = E(0, r_1)$$

$$c_2, s_2 \in_R \mathbb{Z}_q, t_2 = g^{s_2} / Z_v^{c_2}$$

$$c \leftarrow c \in_R \mathbb{Z}_q$$

$$c_1 = c - c_2 \pmod{q}$$

$$s_1 = r_1 + c_1 \alpha \pmod{q}$$

$$s_1 = r_1 + c_1 \alpha \pmod{q}$$
 $\xrightarrow{s_1, s_2, c_1, c_2}$ $c_1 + c_2 \stackrel{?}{=} c \pmod{q}$ $E(0, s_1) \stackrel{?}{=} t_1 \otimes (e^* \otimes e)^{c_1}$

$$g^{s_2} \stackrel{?}{=} t_2 \cdot Z_v^{c_2}$$

NI:
$$(s_1, s_2, c_1, c_2)$$
 s.t. $c_1 + c_2 = H(E(0, s_1) \oslash (e^* \oslash e)^{c_1} \parallel g^{s_2}/Z_v^{c_2})$.

Diverted Validity Proof

Problem

- voter knows v, α s.t. $e = E(v, \alpha)$
- randomizer knows ξ s.t. $e^* = e \otimes E(0, \xi)$
- who proves knowledge of i, α such that $E(0, \alpha) = e^* \oslash E(v_i, 0)$?

Linear ∑-Proofs

- def: Σ-proof is linear when sum of accepting transcripts is accepting
- \bullet note: all used Σ -proofs are linear

Solution

- ullet voter proves validity of e to randomizer
- randomizer generates random accepting transcript (using simulator)
- ullet sum of transcripts is a random transcript for validity of e
- ullet can be adjusted for e^*

Receipt-Free Voting Scheme with Randomizers

Protocol Sketch

- 1. voter sends encrypted ballot $e = E(v, \alpha)$ to randomizer
- 2. randomizer sends $e^* = e \otimes E(0, \xi)$ to voter
- 3. randomizer gives randomization certificate (for e^*) to voter
- 4. proofs: randomization proof and validity proof

Diverted Validity Proof II

Voter

Randomizer

Diversion:

$$\begin{array}{c} \bullet \quad s_j \to s_j + s_j' \\ \bullet \quad c_j \to c_j + c_j' \end{array} \right\} \Rightarrow t_j \to t_j \otimes E(c_j'v_j, s_j') \oslash e^{c_j'}$$

Adjust:

•
$$e \to e + E(0, \alpha) \Rightarrow s_j \to s_j + \alpha c_j$$

K-out-of-L Voting

L parallel 0/1-Votes ...

- *L*-vector of mini-ballots:
- randomizer:

encrypt:

- $e_{1}^{*} | e_{2}^{*} | e_{3}^{*} | e_{4}^{*} | e_{5}^{*}$
- randomization proof for each i (i.e., $e_i^* \cong e_i$)
- diverted validity proof for each i (i.e., e_i^* " \in " $\{0,1\}$)

...Plus

- implicit vote $v_{\Sigma} = \sum v_i$ (should be K)
- implicit encrypted sum: $e_{\Sigma} = \bigotimes e_i$
- implicit randomized sum: $e_{\Sigma}^* = \bigotimes e_i^*$
- diverted validity proof for $\mathcal{V} = \{K\}$

Efficiency

Proposed Scheme

• ballot size: 2L field elements

• diverted validity proof size: 4L + 2 field elements

• voter's & randomizer's signature: 4 field elements

• total on bulletin board: 6L + 6 field elements

Cramer/Gennaro/Schoenmakers (not receipt-free)

• ballot size: 1 field element

ullet validity proof: $4L^{K-1}$ field elements

• voter's signature: 2 field elements

• total on bulletin board: $4L^{K-1} + 3$ field elements

ullet with ElGamal: Exponential computation in L

ullet with ElGamal and Paillier: Exponential communication in K

Conclusions & Open Problems

Electronic Voting is ...

- ... more secure than paper-ballot voting
- ... flexible enough in most cases
- ... efficient enough for real world
- ... appealing

Open Issues

- auditability
- legal system
- people